Just another WordPress.com site


Black hole plasma.

This is the kind of thing you see written and go, “WTF?” I came across this article while I was Stumbling this afternoon and I found it quite unique so I thought I’d share it with you all. All, meaning, the few who have actually been to my blog. Give it a quick read and post a comment letting me know what you think. Like? Don’t like?

It’s not the post I’ve been working on since last night, but it will do until I get that one ready to go.


Black holes are voracious: They devour large amounts of matter from gas clouds or stars in their neighbourhood. As the incoming “food” spirals faster and faster into the abyss, it becomes denser and denser, and heats up to temperatures of many millions of degrees Celsius. Before the matter finally disappears, it emits extraordinarily intense X-rays into space. This “last cry” originates from iron, one of the elements contained in this matter. Researchers at the Max Planck Institute for Nuclear Physics in Heidelberg have collaborated with colleagues at the Helmholtz Zentrum Berlin and used the BESSY II synchrotron X-ray source to investigate what happens in this process.

In order to understand the nature of black holes, it is best to watch them feeding. The most interesting part is just before the matter disappears behind the event horizon – that is, the distance at which the mass attraction of the black hole becomes so strong that not even light can escape. This turbulent process generates X-rays, which in turn excite various chemical elements in the cloud of matter to emit X-rays themselves with characteristic lines (“colours”). An analysis of the lines provides information on the density, velocity and composition of the plasmas near the event horizon.

During this process iron plays an important role. Although it is not as abundant in the universe as lighter elements – mainly hydrogen and helium – it is much better at absorbing and reemitting X-rays. The photons emitted thereby also have a higher energy, respectively a shorter wavelength (a different “colour”), than that of the lighter atoms.

They therefore leave behind clear fingerprints in the rainbow of the dispersed radiation: in the spectrum they reveal themselves as strong lines. The so-called K-alpha line of iron is the final visible spectral signature of matter, its “last cry”, before it disappears behind the event horizon of a black hole, never to be seen again.

The X-rays emitted are also absorbed as they pass through the medium surrounding the black hole at larger distances. And here iron again leaves behind clear fingerprints in the spectra. The radiation ionises the atoms several times and so-called photoionisation typically strips away more than half of the 26 electrons which the iron atoms usually contain. This produces ions with positive charge states that correspond to the number of stripped electrons. The end result is highly charged ions produced not by collisions but by radiation.

It is precisely this process, the stripping of further electrons from highly charged ions by incident X-rays, which researchers at the Max Planck Institute for Nuclear Physics have reproduced in the laboratory in collaboration with colleagues at BESSY II – the Berlin synchrotron X-ray source. The heart of the experiment was the EBIT electron beam ion trap designed at the Max-Planck institute. Inside the trap, iron atoms were heated up with the aid of an intense electron beam as they would be deep inside the sun or, as in this case, in the vicinity of a black hole.

Under such conditions, iron exists, for example, as the Fe14+ ion, ionised fourteen times as it were. The experiment proceeds as follows: A cloud of these ions, only a few centimetres long and thin as a hair, is kept suspended in an ultra-high vacuum with the help of magnetic and electric fields. X-rays from the synchrotron then impact on this cloud; the photon energy of the X-rays is selected by a “monochromator” with extreme precision and directed onto the ions as a thin, focused beam.

 Physicists produce black hole plasma in the labThe spectral lines measured in this experiment can be directly and easily compared with the most recent observations made by X-ray observatories, like Chandra and XMM-Newton. It turns out that most of the theoretical calculation methods used do not predict the line positions accurately enough. This is a big problem for the astrophysicists, because without accurate knowledge of the wavelengths there is no accurate determination of the so-called Doppler effect of these lines.

The Doppler effect describes the change in frequency (energy or wavelength) of the emitted light as a function of the velocity of the source (the ions in the plasma.). Anyone who listens to the siren of a passing ambulance experiences this phenomenon: as long as the vehicle approaches, the perceived pitch of the sound is higher; as it moves away, it is lower. If the frequency in the system at rest is known (ambulance is stationary), measuring the pitch makes it possible to determine the velocity of the source – in astronomy this is the plasma.

This left the scientists puzzled over the interpretation of NGC 3783, one of the active galactic nuclei which have been under investigation for the longest time. The error bars in the frequency in a rest frame calculated with the aid of different theoretical models led to such large uncertainties in the derived velocity of the emitting plasma that reliable statements on the plasma flows were no longer possible.

The laboratory measurements of the Heidelberg-based Max-Planck researchers have now identified one theoretical method among several model calculations that provides the most accurate predictions. They also achieved the highest spectral resolution to date in this wavelength range. It had previously not been possible to experimentally check the different theories in this energy range with such high accuracy.

The novel combination of a trap for highly charged ions and bright synchrotron radiation sources thus represents an important step and a new approach for understanding the physics in the plasmas around black holes or active galactic nuclei. The researchers expect the combination of EBIT spectroscopy and brighter and brighter X-ray sources of the third (PETRA III at DESY) and fourth generation (free-electron laser XFEL, Hamburg/Germany; LCLS, Stanford, USA; SCSS, Tsukuba, Japan) to bring fresh drive to this field.

Source: Physorg

I know some secrets. Wanna hear?

Here is a list couple of websites that I have found over time that are either full of information that is useful or they are just entertaining.

#1) Cracked.com – Cracked… Favorite website to visit when I’m bored. It’s got everything you’ve never even thought of before. Seriously. 5 Things You Won’t Believe Aren’t In the BibleThe 5 Most Inspiring Things Ever Accomplished (While Drunk), and The 5 Most Epic One Man Rampages In the History Of War are only three post titles from the homepage that I checked out for this article. Don’t even try and tell me those have crossed your mind before. They haven’t, trust me, but now you want to click on those links and read WTF they are. The untold secrets of Cracked.com behold you just beyond this link. And you can’t turn down America’s Only Humor & Video Site, since 1958. Cracked #2) Lifehacker.com – Lifehacker is a site that is very popular among internet fiends and those alike but not among people that don’t have a clue how to use the internet besides checking their Facebook, Email, or checking their dating site inbox. This is one of the few sites that I believe refers to almost everyone out there whether it be a chef, a bargain hunter, a techie dude, or do-it-yourselfers (my favorite diy site out there somewhere). It’s got everything. Make a Simple Hallway Bench out of IKEA Shelves and Cushions, Better Facebook Makes the New Facebook Font Readable, Adds Tons of Other Tweaks, and Add Baking Soda to Make Acidic Coffee Stomach Friendly. Cruise this site once in a while when you have got a craving to get off your arse and do something. Or make a search if you are looking for something in particular. If you can’t find it here, check the other site I mentioned before.Lifehacker

I will post some more useful websites soon. New post coming this weekend.


Zach Galifianakis. He’s very unique in the IDGAF kind of way. I appreciate it. I WOULD NOT TOLERATE SUCH DISRESPECT ON MY TV SHOW!! Just kidding… but I’d punch him if he smoked weed at my table. Maybe. It’s Mr. Hangover dude. We’d be the three bestfriends that anyone could ever have…

Wow… but why?

Oh my...

“Convicted forger A. Schiller was serving his time in Sing
Sing prison in the late 1800s when guards found him dead in
his cell. On his body they found seven regular straight pins
whose heads measured the typical 47/1000ths of an inch or
1.17 millimeters in diameter. Under 500 magnification it was
found that the tiny etchings seen on the heads of the pins
were the words to The Lord’s Prayer, which is 65 words and
254 letters long. Of the seven pins, six were silver and one
was gold – the gold pin’s prayer was flawless and a true
masterpiece. Schiller had spent the last 25 years of his life
creating the pins, using a tool too small to be seen by the
naked eye. It is estimated that it took 1,863 sepatate carving
strokes to make it. Schiller went blind because of his


Okay now… was there an actual purpose to him doing this and ruining his eyesight? And who the hell decided to magnify the pinhead 500x? This person must have got a new microscope and is looking at everything 500x its normal size.